
16
PHYSICAL DATABASE DESIGN

AND TUNING

Advice to a client who complained about rain leaking through the roof onto the

dining table: “Move the table.”

—Architect Frank Lloyd Wright

The performance of a DBMS on commonly asked queries and typical update operations

is the ultimate measure of a database design. A DBA can improve performance by

adjusting some DBMS parameters (e.g., the size of the buffer pool or the frequency

of checkpointing) and by identifying performance bottlenecks and adding hardware to

eliminate such bottlenecks. The first step in achieving good performance, however, is

to make good database design choices, which is the focus of this chapter.

After we have designed the conceptual and external schemas, that is, created a collec-

tion of relations and views along with a set of integrity constraints, we must address

performance goals through physical database design, in which we design the phys-

ical schema. As user requirements evolve, it is usually necessary to tune, or adjust,

all aspects of a database design for good performance.

This chapter is organized as follows. We give an overview of physical database design

and tuning in Section 16.1. The most important physical design decisions concern the

choice of indexes. We present guidelines for deciding which indexes to create in Section

16.2. These guidelines are illustrated through several examples and developed further

in Sections 16.3 through 16.6. In Section 16.3 we present examples that highlight basic

alternatives in index selection. In Section 16.4 we look closely at the important issue

of clustering; we discuss how to choose clustered indexes and whether to store tuples

from different relations near each other (an option supported by some DBMSs). In

Section 16.5 we consider the use of indexes with composite or multiple-attribute search

keys. In Section 16.6 we emphasize how well-chosen indexes can enable some queries

to be answered without ever looking at the actual data records.

In Section 16.7 we survey the main issues of database tuning. In addition to tuning

indexes, we may have to tune the conceptual schema, as well as frequently used query

and view definitions. We discuss how to refine the conceptual schema in Section 16.8

and how to refine queries and view definitions in Section 16.9. We briefly discuss the

performance impact of concurrent access in Section 16.10. We conclude the chap-

457

458 Chapter 16

Physical design tools: RDBMSs have hitherto provided few tools to assist

with physical database design and tuning, but vendors have started to address

this issue. Microsoft SQL Server has a tuning wizard that makes suggestions on

indexes to create; it also suggests dropping an index when the addition of other

indexes makes the maintenance cost of the index outweigh its benefits on queries.

IBM DB2 V6 also has a tuning wizard and Oracle Expert makes recommendations

on global parameters, suggests adding/deleting indexes etc.

ter with a short discussion of DBMS benchmarks in Section 16.11; benchmarks help

evaluate the performance of alternative DBMS products.

16.1 INTRODUCTION TO PHYSICAL DATABASE DESIGN

Like all other aspects of database design, physical design must be guided by the nature

of the data and its intended use. In particular, it is important to understand the typical

workload that the database must support; the workload consists of a mix of queries

and updates. Users also have certain requirements about how fast certain queries

or updates must run or how many transactions must be processed per second. The

workload description and users’ performance requirements are the basis on which a

number of decisions have to be made during physical database design.

To create a good physical database design and to tune the system for performance in

response to evolving user requirements, the designer needs to understand the workings

of a DBMS, especially the indexing and query processing techniques supported by the

DBMS. If the database is expected to be accessed concurrently by many users, or is

a distributed database, the task becomes more complicated, and other features of a

DBMS come into play. We discuss the impact of concurrency on database design in

Section 16.10. We discuss distributed databases in Chapter 21.

16.1.1 Database Workloads

The key to good physical design is arriving at an accurate description of the expected

workload. A workload description includes the following elements:

1. A list of queries and their frequencies, as a fraction of all queries and updates.

2. A list of updates and their frequencies.

3. Performance goals for each type of query and update.

For each query in the workload, we must identify:

Physical Database Design and Tuning 459

Which relations are accessed.

Which attributes are retained (in the SELECT clause).

Which attributes have selection or join conditions expressed on them (in the WHERE

clause) and how selective these conditions are likely to be.

Similarly, for each update in the workload, we must identify:

Which attributes have selection or join conditions expressed on them (in the WHERE

clause) and how selective these conditions are likely to be.

The type of update (INSERT, DELETE, or UPDATE) and the updated relation.

For UPDATE commands, the fields that are modified by the update.

Remember that queries and updates typically have parameters, for example, a debit or

credit operation involves a particular account number. The values of these parameters

determine selectivity of selection and join conditions.

Updates have a query component that is used to find the target tuples. This component

can benefit from a good physical design and the presence of indexes. On the other hand,

updates typically require additional work to maintain indexes on the attributes that

they modify. Thus, while queries can only benefit from the presence of an index, an

index may either speed up or slow down a given update. Designers should keep this

trade-off in mind when creating indexes.

16.1.2 Physical Design and Tuning Decisions

Important decisions made during physical database design and database tuning include

the following:

1. Which indexes to create.

Which relations to index and which field or combination of fields to choose

as index search keys.

For each index, should it be clustered or unclustered? Should it be dense or

sparse?

2. Whether we should make changes to the conceptual schema in order to enhance

performance. For example, we have to consider:

Alternative normalized schemas: We usually have more than one way to

decompose a schema into a desired normal form (BCNF or 3NF). A choice

can be made on the basis of performance criteria.

460 Chapter 16

Denormalization: We might want to reconsider schema decompositions car-

ried out for normalization during the conceptual schema design process to

improve the performance of queries that involve attributes from several pre-

viously decomposed relations.

Vertical partitioning: Under certain circumstances we might want to further

decompose relations to improve the performance of queries that involve only

a few attributes.

Views: We might want to add some views to mask the changes in the con-

ceptual schema from users.

3. Whether frequently executed queries and transactions should be rewritten to run

faster.

In parallel or distributed databases, which we discuss in Chapter 21, there are addi-

tional choices to consider, such as whether to partition a relation across different sites

or whether to store copies of a relation at multiple sites.

16.1.3 Need for Database Tuning

Accurate, detailed workload information may be hard to come by while doing the initial

design of the system. Consequently, tuning a database after it has been designed and

deployed is important—we must refine the initial design in the light of actual usage

patterns to obtain the best possible performance.

The distinction between database design and database tuning is somewhat arbitrary.

We could consider the design process to be over once an initial conceptual schema

is designed and a set of indexing and clustering decisions is made. Any subsequent

changes to the conceptual schema or the indexes, say, would then be regarded as a

tuning activity. Alternatively, we could consider some refinement of the conceptual

schema (and physical design decisions affected by this refinement) to be part of the

physical design process.

Where we draw the line between design and tuning is not very important, and we

will simply discuss the issues of index selection and database tuning without regard to

when the tuning activities are carried out.

16.2 GUIDELINES FOR INDEX SELECTION

In considering which indexes to create, we begin with the list of queries (including

queries that appear as part of update operations). Obviously, only relations accessed

by some query need to be considered as candidates for indexing, and the choice of

attributes to index on is guided by the conditions that appear in the WHERE clauses of

Physical Database Design and Tuning 461

the queries in the workload. The presence of suitable indexes can significantly improve

the evaluation plan for a query, as we saw in Chapter 13.

One approach to index selection is to consider the most important queries in turn, and

for each to determine which plan the optimizer would choose given the indexes that

are currently on our list of (to be created) indexes. Then we consider whether we can

arrive at a substantially better plan by adding more indexes; if so, these additional

indexes are candidates for inclusion in our list of indexes. In general, range retrievals

will benefit from a B+ tree index, and exact-match retrievals will benefit from a hash

index. Clustering will benefit range queries, and it will benefit exact-match queries if

several data entries contain the same key value.

Before adding an index to the list, however, we must consider the impact of having

this index on the updates in our workload. As we noted earlier, although an index can

speed up the query component of an update, all indexes on an updated attribute—on

any attribute, in the case of inserts and deletes—must be updated whenever the value

of the attribute is changed. Therefore, we must sometimes consider the trade-off of

slowing some update operations in the workload in order to speed up some queries.

Clearly, choosing a good set of indexes for a given workload requires an understanding

of the available indexing techniques, and of the workings of the query optimizer. The

following guidelines for index selection summarize our discussion:

Guideline 1 (whether to index): The obvious points are often the most important.

Don’t build an index unless some query—including the query components of updates—

will benefit from it. Whenever possible, choose indexes that speed up more than one

query.

Guideline 2 (choice of search key): Attributes mentioned in a WHERE clause are

candidates for indexing.

An exact-match selection condition suggests that we should consider an index on

the selected attributes, ideally, a hash index.

A range selection condition suggests that we should consider a B+ tree (or ISAM)

index on the selected attributes. A B+ tree index is usually preferable to an ISAM

index. An ISAM index may be worth considering if the relation is infrequently

updated, but we will assume that a B+ tree index is always chosen over an ISAM

index, for simplicity.

Guideline 3 (multiple-attribute search keys): Indexes with multiple-attribute

search keys should be considered in the following two situations:

A WHERE clause includes conditions on more than one attribute of a relation.

462 Chapter 16

They enable index-only evaluation strategies (i.e., accessing the relation can be

avoided) for important queries. (This situation could lead to attributes being in

the search key even if they do not appear in WHERE clauses.)

When creating indexes on search keys with multiple attributes, if range queries are

expected, be careful to order the attributes in the search key to match the queries.

Guideline 4 (whether to cluster): At most one index on a given relation can be

clustered, and clustering affects performance greatly; so the choice of clustered index

is important.

As a rule of thumb, range queries are likely to benefit the most from clustering. If

several range queries are posed on a relation, involving different sets of attributes,

consider the selectivity of the queries and their relative frequency in the workload

when deciding which index should be clustered.

If an index enables an index-only evaluation strategy for the query it is intended

to speed up, the index need not be clustered. (Clustering matters only when the

index is used to retrieve tuples from the underlying relation.)

Guideline 5 (hash versus tree index): A B+ tree index is usually preferable

because it supports range queries as well as equality queries. A hash index is better in

the following situations:

The index is intended to support index nested loops join; the indexed relation

is the inner relation, and the search key includes the join columns. In this case,

the slight improvement of a hash index over a B+ tree for equality selections is

magnified, because an equality selection is generated for each tuple in the outer

relation.

There is a very important equality query, and there are no range queries, involving

the search key attributes.

Guideline 6 (balancing the cost of index maintenance): After drawing up a

‘wishlist’ of indexes to create, consider the impact of each index on the updates in the

workload.

If maintaining an index slows down frequent update operations, consider dropping

the index.

Keep in mind, however, that adding an index may well speed up a given update

operation. For example, an index on employee ids could speed up the operation

of increasing the salary of a given employee (specified by id).

Physical Database Design and Tuning 463

16.3 BASIC EXAMPLES OF INDEX SELECTION

The following examples illustrate how to choose indexes during database design. The

schemas used in the examples are not described in detail; in general they contain the

attributes named in the queries. Additional information is presented when necessary.

Let us begin with a simple query:

SELECT E.ename, D.mgr

FROM Employees E, Departments D

WHERE D.dname=‘Toy’ AND E.dno=D.dno

The relations mentioned in the query are Employees and Departments, and both con-

ditions in the WHERE clause involve equalities. Our guidelines suggest that we should

build hash indexes on the attributes involved. It seems clear that we should build

a hash index on the dname attribute of Departments. But consider the equality

E.dno=D.dno. Should we build an index (hash, of course) on the dno attribute of

Departments or of Employees (or both)? Intuitively, we want to retrieve Departments

tuples using the index on dname because few tuples are likely to satisfy the equal-

ity selection D.dname=‘Toy’.1 For each qualifying Departments tuple, we then find

matching Employees tuples by using an index on the dno attribute of Employees. Thus,

we should build an index on the dno field of Employees. (Note that nothing is gained

by building an additional index on the dno field of Departments because Departments

tuples are retrieved using the dname index.)

Our choice of indexes was guided by a query evaluation plan that we wanted to utilize.

This consideration of a potential evaluation plan is common while making physical

design decisions. Understanding query optimization is very useful for physical design.

We show the desired plan for this query in Figure 16.1.

As a variant of this query, suppose that the WHERE clause is modified to be WHERE

D.dname=‘Toy’ AND E.dno=D.dno AND E.age=25. Let us consider alternative evalu-

ation plans. One good plan is to retrieve Departments tuples that satisfy the selection

on dname and to retrieve matching Employees tuples by using an index on the dno

field; the selection on age is then applied on-the-fly. However, unlike the previous vari-

ant of this query, we do not really need to have an index on the dno field of Employees

if we have an index on age. In this case we can retrieve Departments tuples that satisfy

the selection on dname (by using the index on dname, as before), retrieve Employees

tuples that satisfy the selection on age by using the index on age, and join these sets

of tuples. Since the sets of tuples we join are small, they fit in memory and the join

method is not important. This plan is likely to be somewhat poorer than using an

1This is only a heuristic. If dname is not the key, and we do not have statistics to verify this claim,

it is possible that several tuples satisfy this condition!

464 Chapter 16

dname=’Toy’
Employee

Department

ename

dno=dno
Index Nested Loops

Figure 16.1 A Desirable Query Evaluation Plan

index on dno, but it is a reasonable alternative. Therefore, if we have an index on age

already (prompted by some other query in the workload), this variant of the sample

query does not justify creating an index on the dno field of Employees.

Our next query involves a range selection:

SELECT E.ename, D.dname

FROM Employees E, Departments D

WHERE E.sal BETWEEN 10000 AND 20000

AND E.hobby=‘Stamps’ AND E.dno=D.dno

This query illustrates the use of the BETWEEN operator for expressing range selections.

It is equivalent to the condition:

10000 ≤ E.sal AND E.sal ≤ 20000

The use of BETWEEN to express range conditions is recommended; it makes it easier for

both the user and the optimizer to recognize both parts of the range selection.

Returning to the example query, both (nonjoin) selections are on the Employees rela-

tion. Therefore, it is clear that a plan in which Employees is the outer relation and

Departments is the inner relation is the best, as in the previous query, and we should

build a hash index on the dno attribute of Departments. But which index should we

build on Employees? A B+ tree index on the sal attribute would help with the range

selection, especially if it is clustered. A hash index on the hobby attribute would help

with the equality selection. If one of these indexes is available, we could retrieve Em-

ployees tuples using this index, retrieve matching Departments tuples using the index

on dno, and apply all remaining selections and projections on-the-fly. If both indexes

are available, the optimizer would choose the more selective access path for the given

query; that is, it would consider which selection (the range condition on salary or the

equality on hobby) has fewer qualifying tuples. In general, which access path is more

Physical Database Design and Tuning 465

selective depends on the data. If there are very few people with salaries in the given

range and many people collect stamps, the B+ tree index is best. Otherwise, the hash

index on hobby is best.

If the query constants are known (as in our example), the selectivities can be estimated

if statistics on the data are available. Otherwise, as a rule of thumb, an equality

selection is likely to be more selective, and a reasonable decision would be to create

a hash index on hobby. Sometimes, the query constants are not known—we might

obtain a query by expanding a query on a view at run-time, or we might have a query

in dynamic SQL, which allows constants to be specified as wild-card variables (e.g.,

%X) and instantiated at run-time (see Sections 5.9 and 5.10). In this case, if the query

is very important, we might choose to create a B+ tree index on sal and a hash index

on hobby and leave the choice to be made by the optimizer at run-time.

16.4 CLUSTERING AND INDEXING *

Range queries are good candidates for improvement with a clustered index:

SELECT E.dno

FROM Employees E

WHERE E.age > 40

If we have a B+ tree index on age, we can use it to retrieve only tuples that satisfy

the selection E.age> 40. Whether such an index is worthwhile depends first of all

on the selectivity of the condition. What fraction of the employees are older than

40? If virtually everyone is older than 40, we don’t gain much by using an index

on age; a sequential scan of the relation would do almost as well. However, suppose

that only 10 percent of the employees are older than 40. Now, is an index useful? The

answer depends on whether the index is clustered. If the index is unclustered, we could

have one page I/O per qualifying employee, and this could be more expensive than a

sequential scan even if only 10 percent of the employees qualify! On the other hand,

a clustered B+ tree index on age requires only 10 percent of the I/Os for a sequential

scan (ignoring the few I/Os needed to traverse from the root to the first retrieved leaf

page and the I/Os for the relevant index leaf pages).

As another example, consider the following refinement of the previous query:

SELECT E.dno, COUNT(*)

FROM Employees E

WHERE E.age > 10

GROUP BY E.dno

If a B+ tree index is available on age, we could retrieve tuples using it, sort the

retrieved tuples on dno, and so answer the query. However, this may not be a good

466 Chapter 16

plan if virtually all employees are more than 10 years old. This plan is especially bad

if the index is not clustered.

Let us consider whether an index on dno might suit our purposes better. We could use

the index to retrieve all tuples, grouped by dno, and for each dno count the number of

tuples with age > 10. (This strategy can be used with both hash and B+ tree indexes;

we only require the tuples to be grouped, not necessarily sorted, by dno.) Again, the

efficiency depends crucially on whether the index is clustered. If it is, this plan is

likely to be the best if the condition on age is not very selective. (Even if we have

a clustered index on age, if the condition on age is not selective, the cost of sorting

qualifying tuples on dno is likely to be high.) If the index is not clustered, we could

perform one page I/O per tuple in Employees, and this plan would be terrible. Indeed,

if the index is not clustered, the optimizer will choose the straightforward plan based

on sorting on dno. Thus, this query suggests that we build a clustered index on dno if

the condition on age is not very selective. If the condition is very selective, we should

consider building an index (not necessarily clustered) on age instead.

Clustering is also important for an index on a search key that does not include a

candidate key, that is, an index in which several data entries can have the same key

value. To illustrate this point, we present the following query:

SELECT E.dno

FROM Employees E

WHERE E.hobby=‘Stamps’

If many people collect stamps, retrieving tuples through an unclustered index on hobby

can be very inefficient. It may be cheaper to simply scan the relation to retrieve all

tuples and to apply the selection on-the-fly to the retrieved tuples. Therefore, if such

a query is important, we should consider making the index on hobby a clustered index.

On the other hand, if we assume that eid is a key for Employees, and replace the

condition E.hobby=‘Stamps’ by E.eid=552, we know that at most one Employees tuple

will satisfy this selection condition. In this case, there is no advantage to making the

index clustered.

Clustered indexes can be especially important while accessing the inner relation in an

index nested loops join. To understand the relationship between clustered indexes and

joins, let us revisit our first example.

SELECT E.ename, D.mgr

FROM Employees E, Departments D

WHERE D.dname=‘Toy’ AND E.dno=D.dno

We concluded that a good evaluation plan is to use an index on dname to retrieve

Departments tuples satisfying the condition on dname and to find matching Employees

Physical Database Design and Tuning 467

tuples using an index on dno. Should these indexes be clustered? Given our assumption

that the number of tuples satisfying D.dname=‘Toy’ is likely to be small, we should

build an unclustered index on dname. On the other hand, Employees is the inner

relation in an index nested loops join, and dno is not a candidate key. This situation

is a strong argument that the index on the dno field of Employees should be clustered.

In fact, because the join consists of repeatedly posing equality selections on the dno

field of the inner relation, this type of query is a stronger justification for making the

index on dno be clustered than a simple selection query such as the previous selection

on hobby. (Of course, factors such as selectivities and frequency of queries have to be

taken into account as well.)

The following example, very similar to the previous one, illustrates how clustered

indexes can be used for sort-merge joins.

SELECT E.ename, D.mgr

FROM Employees E, Departments D

WHERE E.hobby=‘Stamps’ AND E.dno=D.dno

This query differs from the previous query in that the condition E.hobby=‘Stamps’

replaces D.dname=‘Toy’. Based on the assumption that there are few employees in

the Toy department, we chose indexes that would facilitate an indexed nested loops

join with Departments as the outer relation. Now let us suppose that many employees

collect stamps. In this case, a block nested loops or sort-merge join might be more

efficient. A sort-merge join can take advantage of a clustered B+ tree index on the dno

attribute in Departments to retrieve tuples and thereby avoid sorting Departments.

Note that an unclustered index is not useful—since all tuples are retrieved, performing

one I/O per tuple is likely to be prohibitively expensive. If there is no index on the

dno field of Employees, we could retrieve Employees tuples (possibly using an index

on hobby, especially if the index is clustered), apply the selection E.hobby=‘Stamps’

on-the-fly, and sort the qualifying tuples on dno.

As our discussion has indicated, when we retrieve tuples using an index, the impact

of clustering depends on the number of retrieved tuples, that is, the number of tuples

that satisfy the selection conditions that match the index. An unclustered index is

just as good as a clustered index for a selection that retrieves a single tuple (e.g., an

equality selection on a candidate key). As the number of retrieved tuples increases,

the unclustered index quickly becomes more expensive than even a sequential scan

of the entire relation. Although the sequential scan retrieves all tuples, it has the

property that each page is retrieved exactly once, whereas a page may be retrieved as

often as the number of tuples it contains if an unclustered index is used. If blocked

I/O is performed (as is common), the relative advantage of sequential scan versus

an unclustered index increases further. (Blocked I/O also speeds up access using a

clustered index, of course.)

468 Chapter 16

We illustrate the relationship between the number of retrieved tuples, viewed as a

percentage of the total number of tuples in the relation, and the cost of various access

methods in Figure 16.2. We assume that the query is a selection on a single relation, for

simplicity. (Note that this figure reflects the cost of writing out the result; otherwise,

the line for sequential scan would be flat.)

unclustered index is
better than sequential
scan of entire relation

Range in which

Percentage of tuples retrieved

Cost

0 100

Unclustered index

Sequential scan

Clustered index

Figure 16.2 The Impact of Clustering

16.4.1 Co-clustering Two Relations

In our description of a typical database system architecture in Chapter 7, we explained

how a relation is stored as a file of records. Although a file usually contains only the

records of some one relation, some systems allow records from more than one relation

to be stored in a single file. The database user can request that the records from

two relations be interleaved physically in this manner. This data layout is sometimes

referred to as co-clustering the two relations. We now discuss when co-clustering can

be beneficial.

As an example, consider two relations with the following schemas:

Parts(pid: integer, pname: string, cost: integer, supplierid: integer)

Assembly(partid: integer, componentid: integer, quantity: integer)

In this schema the componentid field of Assembly is intended to be the pid of some part

that is used as a component in assembling the part with pid equal to partid. Thus,

the Assembly table represents a 1:N relationship between parts and their subparts; a

part can have many subparts, but each part is the subpart of at most one part. In

the Parts table pid is the key. For composite parts (those assembled from other parts,

as indicated by the contents of Assembly), the cost field is taken to be the cost of

assembling the part from its subparts.

Physical Database Design and Tuning 469

Suppose that a frequent query is to find the (immediate) subparts of all parts that are

supplied by a given supplier:

SELECT P.pid, A.componentid

FROM Parts P, Assembly A

WHERE P.pid = A.partid AND P.supplierid = ‘Acme’

A good evaluation plan is to apply the selection condition on Parts and to then retrieve

matching Assembly tuples through an index on the partid field. Ideally, the index on

partid should be clustered. This plan is reasonably good. However, if such selections

are common and we want to optimize them further, we can co-cluster the two tables.

In this approach we store records of the two tables together, with each Parts record

P followed by all the Assembly records A such that P.pid = A.partid. This approach

improves on storing the two relations separately and having a clustered index on partid

because it doesn’t need an index lookup to find the Assembly records that match a

given Parts record. Thus, for each selection query, we save a few (typically two or

three) index page I/Os.

If we are interested in finding the immediate subparts of all parts (i.e., the above query

without the selection on supplierid), creating a clustered index on partid and doing an

index nested loops join with Assembly as the inner relation offers good performance.

An even better strategy is to create a clustered index on the partid field of Assembly

and the pid field of Parts, and to then do a sort-merge join, using the indexes to

retrieve tuples in sorted order. This strategy is comparable to doing the join using a

co-clustered organization, which involves just one scan of the set of tuples (of Parts

and Assembly, which are stored together in interleaved fashion).

The real benefit of co-clustering is illustrated by the following query:

SELECT P.pid, A.componentid

FROM Parts P, Assembly A

WHERE P.pid = A.partid AND P.cost=10

Suppose that many parts have cost = 10. This query essentially amounts to a collection

of queries in which we are given a Parts record and want to find matching Assembly

records. If we have an index on the cost field of Parts, we can retrieve qualifying Parts

tuples. For each such tuple we have to use the index on Assembly to locate records

with the given pid. The index access for Assembly is avoided if we have a co-clustered

organization. (Of course, we still require an index on the cost attribute of Parts tuples.)

Such an optimization is especially important if we want to traverse several levels of

the part-subpart hierarchy. For example, a common query is to find the total cost

of a part, which requires us to repeatedly carry out joins of Parts and Assembly.

Incidentally, if we don’t know the number of levels in the hierarchy in advance, the

470 Chapter 16

number of joins varies and the query cannot be expressed in SQL. The query can

be answered by embedding an SQL statement for the join inside an iterative host

language program. How to express the query is orthogonal to our main point here,

which is that co-clustering is especially beneficial when the join in question is carried

out very frequently (either because it arises repeatedly in an important query such as

finding total cost, or because the join query is itself asked very frequently).

To summarize co-clustering:

It can speed up joins, in particular key–foreign key joins corresponding to 1:N

relationships.

A sequential scan of either relation becomes slower. (In our example, since several

Assembly tuples are stored in between consecutive Parts tuples, a scan of all

Parts tuples becomes slower than if Parts tuples were stored separately. Similarly,

a sequential scan of all Assembly tuples is also slower.)

Inserts, deletes, and updates that alter record lengths all become slower, thanks

to the overheads involved in maintaining the clustering. (We will not discuss the

implementation issues involved in co-clustering.)

16.5 INDEXES ON MULTIPLE-ATTRIBUTE SEARCH KEYS *

It is sometimes best to build an index on a search key that contains more than one field.

For example, if we want to retrieve Employees records with age=30 and sal=4000, an

index with search key 〈age, sal〉 (or 〈sal, age〉) is superior to an index with search key

age or an index with search key sal. If we have two indexes, one on age and one on

sal, we could use them both to answer the query by retrieving and intersecting rids.

However, if we are considering what indexes to create for the sake of this query, we are

better off building one composite index.

Issues such as whether to make the index clustered or unclustered, dense or sparse, and

so on are orthogonal to the choice of the search key. We will call indexes on multiple-

attribute search keys composite indexes. In addition to supporting equality queries on

more than one attribute, composite indexes can be used to support multidimensional

range queries.

Consider the following query, which returns all employees with 20 < age < 30 and

3000 < sal < 5000:

SELECT E.eid

FROM Employees E

WHERE E.age BETWEEN 20 AND 30

AND E.sal BETWEEN 3000 AND 5000

Physical Database Design and Tuning 471

A composite index on 〈age, sal〉 could help if the conditions in the WHERE clause are

fairly selective. Obviously, a hash index will not help; a B+ tree (or ISAM) index is

required. It is also clear that a clustered index is likely to be superior to an unclustered

index. For this query, in which the conditions on age and sal are equally selective, a

composite, clustered B+ tree index on 〈age, sal〉 is as effective as a composite, clustered

B+ tree index on 〈sal, age〉. However, the order of search key attributes can sometimes

make a big difference, as the next query illustrates:

SELECT E.eid

FROM Employees E

WHERE E.age = 25

AND E.sal BETWEEN 3000 AND 5000

In this query a composite, clustered B+ tree index on 〈age, sal〉 will give good per-

formance because records are sorted by age first and then (if two records have the

same age value) by sal. Thus, all records with age = 25 are clustered together. On

the other hand, a composite, clustered B+ tree index on 〈sal, age〉 will not perform as

well. In this case, records are sorted by sal first, and therefore two records with the

same age value (in particular, with age = 25) may be quite far apart. In effect, this

index allows us to use the range selection on sal, but not the equality selection on age,

to retrieve tuples. (Good performance on both variants of the query can be achieved

using a single spatial index. We discuss spatial indexes in Chapter 26.)

Some points about composite indexes are worth mentioning. Since data entries in the

index contain more information about the data record (i.e., more fields than a single-

attribute index), the opportunities for index-only evaluation strategies are increased

(see Section 16.6). On the negative side, a composite index must be updated in response

to any operation (insert, delete, or update) that modifies any field in the search key. A

composite index is likely to be larger than a single-attribute search key index because

the size of entries is larger. For a composite B+ tree index, this also means a potential

increase in the number of levels, although key compression can be used to alleviate

this problem (see Section 9.8.1).

16.6 INDEXES THAT ENABLE INDEX-ONLY PLANS *

This section considers a number of queries for which we can find efficient plans that

avoid retrieving tuples from one of the referenced relations; instead, these plans scan

an associated index (which is likely to be much smaller). An index that is used (only)

for index-only scans does not have to be clustered because tuples from the indexed

relation are not retrieved! However, only dense indexes can be used for the index-only

strategies discussed here.

This query retrieves the managers of departments with at least one employee:

472 Chapter 16

SELECT D.mgr

FROM Departments D, Employees E

WHERE D.dno=E.dno

Observe that no attributes of Employees are retained. If we have a dense index on the

dno field of Employees, the optimization of doing an index nested loops join using an

index-only scan for the inner relation is applicable; this optimization is discussed in

Section 14.7. Note that it does not matter whether this index is clustered because we

do not retrieve Employees tuples anyway. Given this variant of the query, the correct

decision is to build an unclustered, dense index on the dno field of Employees, rather

than a (dense or sparse) clustered index.

The next query takes this idea a step further:

SELECT D.mgr, E.eid

FROM Departments D, Employees E

WHERE D.dno=E.dno

If we have an index on the dno field of Employees, we can use it to retrieve Employees

tuples during the join (with Departments as the outer relation), but unless the index

is clustered, this approach will not be efficient. On the other hand, suppose that we

have a dense B+ tree index on 〈dno, eid〉. Now all the information we need about an

Employees tuple is contained in the data entry for this tuple in the index. We can use

the index to find the first data entry with a given dno; all data entries with the same

dno are stored together in the index. (Note that a hash index on the composite key

〈dno, eid〉 cannot be used to locate an entry with just a given dno!) We can therefore

evaluate this query using an index nested loops join with Departments as the outer

relation and an index-only scan of the inner relation.

The next query shows how aggregate operations can influence the choice of indexes:

SELECT E.dno, COUNT(*)

FROM Employees E

GROUP BY E.dno

A straightforward plan for this query is to sort Employees on dno in order to compute

the count of employees for each dno. However, if a dense index—hash or B+ tree—is

available, we can answer this query by scanning only the index. For each dno value,

we simply count the number of data entries in the index with this value for the search

key. Note that it does not matter whether the index is clustered because we never

retrieve tuples of Employees.

Here is a variation of the previous example:

SELECT E.dno, COUNT(*)

Physical Database Design and Tuning 473

FROM Employees E

WHERE E.sal=10,000

GROUP BY E.dno

An index on dno alone will not allow us to evaluate this query with an index-only scan,

because we need to look at the sal field of each tuple to verify that sal = 10, 000.

However, we can use an index-only plan if we have a composite B+ tree index on

〈sal, dno〉 or 〈dno, sal〉. In an index with key 〈sal, dno〉, all data entries with sal =

10, 000 are arranged contiguously (whether or not the index is clustered). Further,

these entries are sorted by dno, making it easy to obtain a count for each dno group.

Note that we need to retrieve only data entries with sal = 10, 000. It is worth observing

that this strategy will not work if the WHERE clause is modified to use sal > 10, 000.

Although it suffices to retrieve only index data entries—that is, an index-only strategy

still applies—these entries must now be sorted by dno to identify the groups (because,

for example, two entries with the same dno but different sal values may not be con-

tiguous).

In an index with key 〈dno, sal〉, data entries with a given dno value are stored together,

and each such group of entries is itself sorted by sal. For each dno group, we can

eliminate the entries with sal not equal to 10,000 and count the rest. We observe that

this strategy works even if the WHERE clause uses sal > 10, 000. Of course, this method

is less efficient than an index-only scan with key 〈sal, dno〉 because we must read all

data entries.

As another example, suppose that we want to find the minimum sal for each dno:

SELECT E.dno, MIN(E.sal)

FROM Employees E

GROUP BY E.dno

An index on dno alone will not allow us to evaluate this query with an index-only

scan. However, we can use an index-only plan if we have a composite B+ tree index on

〈dno, sal〉. Notice that all data entries in the index with a given dno value are stored

together (whether or not the index is clustered). Further, this group of entries is itself

sorted by sal. An index on 〈sal, dno〉 would enable us to avoid retrieving data records,

but the index data entries must be sorted on dno.

Finally consider the following query:

SELECT AVG (E.sal)

FROM Employees E

WHERE E.age = 25

AND E.sal BETWEEN 3000 AND 5000

474 Chapter 16

A dense, composite B+ tree index on 〈age, sal〉 allows us to answer the query with an

index-only scan. A dense, composite B+ tree index on 〈sal, age〉 will also allow us to

answer the query with an index-only scan, although more index entries are retrieved

in this case than with an index on 〈age, sal〉.

16.7 OVERVIEW OF DATABASE TUNING

After the initial phase of database design, actual use of the database provides a valuable

source of detailed information that can be used to refine the initial design. Many of

the original assumptions about the expected workload can be replaced by observed

usage patterns; in general, some of the initial workload specification will be validated,

and some of it will turn out to be wrong. Initial guesses about the size of data can

be replaced with actual statistics from the system catalogs (although this information

will keep changing as the system evolves). Careful monitoring of queries can reveal

unexpected problems; for example, the optimizer may not be using some indexes as

intended to produce good plans.

Continued database tuning is important to get the best possible performance. In this

section, we introduce three kinds of tuning: tuning indexes, tuning the conceptual

schema, and tuning queries. Our discussion of index selection also applies to index

tuning decisions. Conceptual schema and query tuning are discussed further in Sections

16.8 and 16.9.

16.7.1 Tuning Indexes

The initial choice of indexes may be refined for one of several reasons. The simplest

reason is that the observed workload reveals that some queries and updates considered

important in the initial workload specification are not very frequent. The observed

workload may also identify some new queries and updates that are important. The

initial choice of indexes has to be reviewed in light of this new information. Some of

the original indexes may be dropped and new ones added. The reasoning involved is

similar to that used in the initial design.

It may also be discovered that the optimizer in a given system is not finding some of

the plans that it was expected to. For example, consider the following query, which

we discussed earlier:

SELECT D.mgr

FROM Employees E, Departments D

WHERE D.dname=‘Toy’ AND E.dno=D.dno

A good plan here would be to use an index on dname to retrieve Departments tuples

with dname=‘Toy’ and to use a dense index on the dno field of Employees as the inner

Physical Database Design and Tuning 475

relation, using an index-only scan. Anticipating that the optimizer would find such a

plan, we might have created a dense, unclustered index on the dno field of Employees.

Now suppose that queries of this form take an unexpectedly long time to execute. We

can ask to see the plan produced by the optimizer. (Most commercial systems provide a

simple command to do this.) If the plan indicates that an index-only scan is not being

used, but that Employees tuples are being retrieved, we have to rethink our initial

choice of index, given this revelation about our system’s (unfortunate) limitations. An

alternative to consider here would be to drop the unclustered index on the dno field of

Employees and to replace it with a clustered index.

Some other common limitations of optimizers are that they do not handle selections

involving string expressions, arithmetic, or null values effectively. We discuss these

points further when we consider query tuning in Section 16.9.

In addition to re-examining our choice of indexes, it pays to periodically reorganize

some indexes. For example, a static index such as an ISAM index may have devel-

oped long overflow chains. Dropping the index and rebuilding it—if feasible, given

the interrupted access to the indexed relation—can substantially improve access times

through this index. Even for a dynamic structure such as a B+ tree, if the implemen-

tation does not merge pages on deletes, space occupancy can decrease considerably

in some situations. This in turn makes the size of the index (in pages) larger than

necessary, and could increase the height and therefore the access time. Rebuilding the

index should be considered. Extensive updates to a clustered index might also lead

to overflow pages being allocated, thereby decreasing the degree of clustering. Again,

rebuilding the index may be worthwhile.

Finally, note that the query optimizer relies on statistics maintained in the system

catalogs. These statistics are updated only when a special utility program is run; be

sure to run the utility frequently enough to keep the statistics reasonably current.

16.7.2 Tuning the Conceptual Schema

In the course of database design, we may realize that our current choice of relation

schemas does not enable us meet our performance objectives for the given workload

with any (feasible) set of physical design choices. If so, we may have to redesign our

conceptual schema (and re-examine physical design decisions that are affected by the

changes that we make).

We may realize that a redesign is necessary during the initial design process or later,

after the system has been in use for a while. Once a database has been designed and

populated with tuples, changing the conceptual schema requires a significant effort

in terms of mapping the contents of relations that are affected. Nonetheless, it may

476 Chapter 16

sometimes be necessary to revise the conceptual schema in light of experience with the

system. (Such changes to the schema of an operational system are sometimes referred

to as schema evolution.) We now consider the issues involved in conceptual schema

(re)design from the point of view of performance.

The main point to understand is that our choice of conceptual schema should be guided

by a consideration of the queries and updates in our workload, in addition to the issues

of redundancy that motivate normalization (which we discussed in Chapter 15). Several

options must be considered while tuning the conceptual schema:

We may decide to settle for a 3NF design instead of a BCNF design.

If there are two ways to decompose a given schema into 3NF or BCNF, our choice

should be guided by the workload.

Sometimes we might decide to further decompose a relation that is already in

BCNF.

In other situations we might denormalize. That is, we might choose to replace a

collection of relations obtained by a decomposition from a larger relation with the

original (larger) relation, even though it suffers from some redundancy problems.

Alternatively, we might choose to add some fields to certain relations to speed

up some important queries, even if this leads to a redundant storage of some

information (and consequently, a schema that is in neither 3NF nor BCNF).

This discussion of normalization has concentrated on the technique of decomposi-

tion, which amounts to vertical partitioning of a relation. Another technique to

consider is horizontal partitioning of a relation, which would lead to our having

two relations with identical schemas. Note that we are not talking about phys-

ically partitioning the tuples of a single relation; rather, we want to create two

distinct relations (possibly with different constraints and indexes on each).

Incidentally, when we redesign the conceptual schema, especially if we are tuning an

existing database schema, it is worth considering whether we should create views to

mask these changes from users for whom the original schema is more natural. We will

discuss the choices involved in tuning the conceptual schema in Section 16.8.

16.7.3 Tuning Queries and Views

If we notice that a query is running much slower than we expected, we have to examine

the query carefully to find the problem. Some rewriting of the query, perhaps in

conjunction with some index tuning, can often fix the problem. Similar tuning may

be called for if queries on some view run slower than expected. We will not discuss

view tuning separately; just think of queries on views as queries in their own right

Physical Database Design and Tuning 477

(after all, queries on views are expanded to account for the view definition before

being optimized) and consider how to tune them.

When tuning a query, the first thing to verify is that the system is using the plan that

you expect it to use. It may be that the system is not finding the best plan for a

variety of reasons. Some common situations that are not handled efficiently by many

optimizers follow.

A selection condition involving null values.

Selection conditions involving arithmetic or string expressions or conditions using

the OR connective. For example, if we have a condition E.age = 2*D.age in the

WHERE clause, the optimizer may correctly utilize an available index on E.age but

fail to utilize an available index on D.age. Replacing the condition by E.age/2 =

D.age would reverse the situation.

Inability to recognize a sophisticated plan such as an index-only scan for an ag-

gregation query involving a GROUP BY clause. Of course, virtually no optimizer

will look for plans outside the plan space described in Chapters 12 and 13, such

as nonleft-deep join trees. So a good understanding of what an optimizer typi-

cally does is important. In addition, the more aware you are of a given system’s

strengths and limitations, the better off you are.

If the optimizer is not smart enough to find the best plan (using access methods and

evaluation strategies supported by the DBMS), some systems allow users to guide the

choice of a plan by providing hints to the optimizer; for example, users might be able

to force the use of a particular index or choose the join order and join method. A user

who wishes to guide optimization in this manner should have a thorough understanding

of both optimization and the capabilities of the given DBMS. We will discuss query

tuning further in Section 16.9.

16.8 CHOICES IN TUNING THE CONCEPTUAL SCHEMA *

We now illustrate the choices involved in tuning the conceptual schema through several

examples using the following schemas:

Contracts(cid: integer, supplierid: integer, projectid: integer,

deptid: integer, partid: integer, qty: integer, value: real)

Departments(did: integer, budget: real, annualreport: varchar)

Parts(pid: integer, cost: integer)

Projects(jid: integer, mgr: char(20))

Suppliers(sid: integer, address: char(50))

For brevity, we will often use the common convention of denoting attributes by a

single character and denoting relation schemas by a sequence of characters. Consider

478 Chapter 16

the schema for the relation Contracts, which we will denote as CSJDPQV, with each

letter denoting an attribute. The meaning of a tuple in this relation is that the contract

with cid C is an agreement that supplier S (with sid equal to supplierid) will supply

Q items of part P (with pid equal to partid) to project J (with jid equal to projectid)

associated with department D (with deptid equal to did), and that the value V of this

contract is equal to value.2

There are two known integrity constraints with respect to Contracts. A project pur-

chases a given part using a single contract; thus, there will not be two distinct contracts

in which the same project buys the same part. This constraint is represented using

the FD JP → C. Also, a department purchases at most one part from any given

supplier. This constraint is represented using the FD SD → P . In addition, of course,

the contract id C is a key. The meaning of the other relations should be obvious, and

we will not describe them further because our focus will be on the Contracts relation.

16.8.1 Settling for a Weaker Normal Form

Consider the Contracts relation. Should we decompose it into smaller relations? Let

us see what normal form it is in. The candidate keys for this relation are C and JP. (C

is given to be a key, and JP functionally determines C.) The only nonkey dependency

is SD → P , and P is a prime attribute because it is part of candidate key JP. Thus,

the relation is not in BCNF—because there is a nonkey dependency—but it is in 3NF.

By using the dependency SD → P to guide the decomposition, we get the two

schemas SDP and CSJDQV. This decomposition is lossless, but it is not dependency-

preserving. However, by adding the relation scheme CJP, we obtain a lossless-join

and dependency-preserving decomposition into BCNF. Using the guideline that a

dependency-preserving, lossless-join decomposition into BCNF is good, we might de-

cide to replace Contracts by three relations with schemas CJP, SDP, and CSJDQV.

However, suppose that the following query is very frequently asked: Find the number of

copies Q of part P ordered in contract C. This query requires a join of the decomposed

relations CJP and CSJDQV (or of SDP and CSJDQV), whereas it can be answered

directly using the relation Contracts. The added cost for this query could persuade us

to settle for a 3NF design and not decompose Contracts further.

16.8.2 Denormalization

The reasons motivating us to settle for a weaker normal form may lead us to take

an even more extreme step: deliberately introduce some redundancy. As an example,

2If this schema seems complicated, note that real-life situations often call for considerably more

complex schemas!

Physical Database Design and Tuning 479

consider the Contracts relation, which is in 3NF. Now, suppose that a frequent query

is to check that the value of a contract is less than the budget of the contracting

department. We might decide to add a budget field B to Contracts. Since did is a

key for Departments, we now have the dependency D → B in Contracts, which means

Contracts is not in 3NF any more. Nonetheless, we might choose to stay with this

design if the motivating query is sufficiently important. Such a decision is clearly

subjective and comes at the cost of significant redundancy.

16.8.3 Choice of Decompositions

Consider the Contracts relation again. Several choices are possible for dealing with

the redundancy in this relation:

We can leave Contracts as it is and accept the redundancy associated with its

being in 3NF rather than BCNF.

We might decide that we want to avoid the anomalies resulting from this redun-

dancy by decomposing Contracts into BCNF using one of the following methods:

– We have a lossless-join decomposition into PartInfo with attributes SDP and

ContractInfo with attributes CSJDQV. As noted previously, this decompo-

sition is not dependency-preserving, and to make it dependency-preserving

would require us to add a third relation CJP, whose sole purpose is to allow

us to check the dependency JP → C.

– We could choose to replace Contracts by just PartInfo and ContractInfo even

though this decomposition is not dependency-preserving.

Replacing Contracts by just PartInfo and ContractInfo does not prevent us from en-

forcing the constraint JP → C; it only makes this more expensive. We could create

an assertion in SQL-92 to check this constraint:

CREATE ASSERTION checkDep

CHECK (NOT EXISTS

(SELECT *

FROM PartInfo PI, ContractInfo CI

WHERE PI.supplierid=CI.supplierid

AND PI.deptid=CI.deptid

GROUP BY CI.projectid, PI.partid

HAVING COUNT (cid) > 1))

This assertion is expensive to evaluate because it involves a join followed by a sort

(to do the grouping). In comparison, the system can check that JP is a primary key

for table CJP by maintaining an index on JP . This difference in integrity-checking

cost is the motivation for dependency-preservation. On the other hand, if updates are

480 Chapter 16

infrequent, this increased cost may be acceptable; therefore, we might choose not to

maintain the table CJP (and quite likely, an index on it).

As another example illustrating decomposition choices, consider the Contracts relation

again, and suppose that we also have the integrity constraint that a department uses

a given supplier for at most one of its projects: SPQ → V . Proceeding as before, we

have a lossless-join decomposition of Contracts into SDP and CSJDQV. Alternatively,

we could begin by using the dependency SPQ → V to guide our decomposition, and

replace Contracts with SPQV and CSJDPQ. We can then decompose CSJDPQ, guided

by SD → P , to obtain SDP and CSJDQ.

Thus, we now have two alternative lossless-join decompositions of Contracts into

BCNF, neither of which is dependency-preserving. The first alternative is to replace

Contracts with the relations SDP and CSJDQV. The second alternative is to replace it

with SPQV, SDP, and CSJDQ. The addition of CJP makes the second decomposition

(but not the first!) dependency-preserving. Again, the cost of maintaining the three

relations CJP, SPQV, and CSJDQ (versus just CSJDQV) may lead us to choose the

first alternative. In this case, enforcing the given FDs becomes more expensive. We

might consider not enforcing them, but we then risk a violation of the integrity of our

data.

16.8.4 Vertical Decomposition

Suppose that we have decided to decompose Contracts into SDP and CSJDQV. These

schemas are in BCNF, and there is no reason to decompose them further from a nor-

malization standpoint. However, suppose that the following queries are very frequent:

Find the contracts held by supplier S.

Find the contracts placed by department D.

These queries might lead us to decompose CSJDQV into CS, CD, and CJQV. The

decomposition is lossless, of course, and the two important queries can be answered by

examining much smaller relations.

Whenever we decompose a relation, we have to consider which queries the decompo-

sition might adversely affect, especially if the only motivation for the decomposition

is improved performance. For example, if another important query is to find the to-

tal value of contracts held by a supplier, it would involve a join of the decomposed

relations CS and CJQV. In this situation we might decide against the decomposition.

Physical Database Design and Tuning 481

16.8.5 Horizontal Decomposition

Thus far, we have essentially considered how to replace a relation with a collection

of vertical decompositions. Sometimes, it is worth considering whether to replace a

relation with two relations that have the same attributes as the original relation, each

containing a subset of the tuples in the original. Intuitively, this technique is useful

when different subsets of tuples are queried in very distinct ways.

For example, different rules may govern large contracts, which are defined as contracts

with values greater than 10,000. (Perhaps such contracts have to be awarded through a

bidding process.) This constraint could lead to a number of queries in which Contracts

tuples are selected using a condition of the form value > 10, 000. One way to approach

this situation is to build a clustered B+ tree index on the value field of Contracts.

Alternatively, we could replace Contracts with two relations called LargeContracts

and SmallContracts, with the obvious meaning. If this query is the only motivation

for the index, horizontal decomposition offers all the benefits of the index without

the overhead of index maintenance. This alternative is especially attractive if other

important queries on Contracts also require clustered indexes (on fields other than

value).

If we replace Contracts by two relations LargeContracts and SmallContracts, we could

mask this change by defining a view called Contracts:

CREATE VIEW Contracts(cid, supplierid, projectid, deptid, partid, qty, value)

AS ((SELECT *

FROM LargeContracts)

UNION

(SELECT *

FROM SmallContracts))

However, any query that deals solely with LargeContracts should be expressed directly

on LargeContracts, and not on the view. Expressing the query on the view Contracts

with the selection condition value > 10, 000 is equivalent to expressing the query on

LargeContracts, but less efficient. This point is quite general: Although we can mask

changes to the conceptual schema by adding view definitions, users concerned about

performance have to be aware of the change.

As another example, if Contracts had an additional field year and queries typically

dealt with the contracts in some one year, we might choose to partition Contracts by

year. Of course, queries that involved contracts from more than one year might require

us to pose queries against each of the decomposed relations.

482 Chapter 16

16.9 CHOICES IN TUNING QUERIES AND VIEWS *

The first step in tuning a query is to understand the plan that is used by the DBMS

to evaluate the query. Systems usually provide some facility for identifying the plan

used to evaluate a query. Once we understand the plan selected by the system, we can

consider how to improve performance. We can consider a different choice of indexes

or perhaps co-clustering two relations for join queries, guided by our understanding of

the old plan and a better plan that we want the DBMS to use. The details are similar

to the initial design process.

One point worth making is that before creating new indexes we should consider whether

rewriting the query will achieve acceptable results with existing indexes. For example,

consider the following query with an OR connective:

SELECT E.dno

FROM Employees E

WHERE E.hobby=‘Stamps’ OR E.age=10

If we have indexes on both hobby and age, we can use these indexes to retrieve the

necessary tuples, but an optimizer might fail to recognize this opportunity. The op-

timizer might view the conditions in the WHERE clause as a whole as not matching

either index, do a sequential scan of Employees, and apply the selections on-the-fly.

Suppose we rewrite the query as the union of two queries, one with the clause WHERE

E.hobby=‘Stamps’ and the other with the clause WHERE E.age=10. Now each of these

queries will be answered efficiently with the aid of the indexes on hobby and age.

We should also consider rewriting the query to avoid some expensive operations. For

example, including DISTINCT in the SELECT clause leads to duplicate elimination,

which can be costly. Thus, we should omit DISTINCT whenever possible. For ex-

ample, for a query on a single relation, we can omit DISTINCT whenever either of the

following conditions holds:

We do not care about the presence of duplicates.

The attributes mentioned in the SELECT clause include a candidate key for the

relation.

Sometimes a query with GROUP BY and HAVING can be replaced by a query without

these clauses, thereby eliminating a sort operation. For example, consider:

SELECT MIN (E.age)

FROM Employees E

GROUP BY E.dno

HAVING E.dno=102

Physical Database Design and Tuning 483

This query is equivalent to

SELECT MIN (E.age)

FROM Employees E

WHERE E.dno=102

Complex queries are often written in steps, using a temporary relation. We can usually

rewrite such queries without the temporary relation to make them run faster. Consider

the following query for computing the average salary of departments managed by

Robinson:

SELECT *

INTO Temp

FROM Employees E, Departments D

WHERE E.dno=D.dno AND D.mgrname=‘Robinson’

SELECT T.dno, AVG (T.sal)

FROM Temp T

GROUP BY T.dno

This query can be rewritten as

SELECT E.dno, AVG (E.sal)

FROM Employees E, Departments D

WHERE E.dno=D.dno AND D.mgrname=‘Robinson’

GROUP BY E.dno

The rewritten query does not materialize the intermediate relation Temp and is there-

fore likely to be faster. In fact, the optimizer may even find a very efficient index-only

plan that never retrieves Employees tuples if there is a dense, composite B+ tree index

on 〈dno, sal〉. This example illustrates a general observation: By rewriting queries to

avoid unnecessary temporaries, we not only avoid creating the temporary relations, we

also open up more optimization possibilities for the optimizer to explore.

In some situations, however, if the optimizer is unable to find a good plan for a complex

query (typically a nested query with correlation), it may be worthwhile to rewrite the

query using temporary relations to guide the optimizer toward a good plan.

In fact, nested queries are a common source of inefficiency because many optimizers

deal poorly with them, as discussed in Section 14.5. Whenever possible, it is better

to rewrite a nested query without nesting and to rewrite a correlated query without

correlation. As already noted, a good reformulation of the query may require us to

introduce new, temporary relations, and techniques to do so systematically (ideally, to

484 Chapter 16

be done by the optimizer) have been widely studied. Often though, it is possible to

rewrite nested queries without nesting or the use of temporary relations, as illustrated

in Section 14.5.

16.10 IMPACT OF CONCURRENCY *

In a system with many concurrent users, several additional points must be considered.

As we saw in Chapter 1, each user’s program (transaction) obtains locks on the pages

that it reads or writes. Other transactions cannot access locked pages until this trans-

action completes and releases the locks. This restriction can lead to contention for

locks on heavily used pages.

The duration for which transactions hold locks can affect performance signifi-

cantly. Tuning transactions by writing to local program variables and deferring

changes to the database until the end of the transaction (and thereby delaying the

acquisition of the corresponding locks) can greatly improve performance. On a

related note, performance can be improved by replacing a transaction with several

smaller transactions, each of which holds locks for a shorter time.

At the physical level, a careful partitioning of the tuples in a relation and its

associated indexes across a collection of disks can significantly improve concurrent

access. For example, if we have the relation on one disk and an index on another,

accesses to the index can proceed without interfering with accesses to the relation,

at least at the level of disk reads.

If a relation is updated frequently, B+ tree indexes in particular can become a con-

currency control bottleneck because all accesses through the index must go through

the root; thus, the root and index pages just below it can become hotspots, that

is, pages for which there is heavy contention. If the DBMS uses specialized locking

protocols for tree indexes, and in particular, sets fine-granularity locks, this prob-

lem is greatly alleviated. Many current systems use such techniques. Nonetheless,

this consideration may lead us to choose an ISAM index in some situations. Be-

cause the index levels of an ISAM index are static, we do not need to obtain locks

on these pages; only the leaf pages need to be locked. An ISAM index may be

preferable to a B+ tree index, for example, if frequent updates occur but we ex-

pect the relative distribution of records and the number (and size) of records with

a given range of search key values to stay approximately the same. In this case the

ISAM index offers a lower locking overhead (and reduced contention for locks),

and the distribution of records is such that few overflow pages will be created.

Hashed indexes do not create such a concurrency bottleneck, unless the data

distribution is very skewed and many data items are concentrated in a few buckets.

In this case the directory entries for these buckets can become a hotspot.

The pattern of updates to a relation can also become significant. For example,

if tuples are inserted into the Employees relation in eid order and we have a B+

Physical Database Design and Tuning 485

tree index on eid, each insert will go to the last leaf page of the B+ tree. This

leads to hotspots along the path from the root to the right-most leaf page. Such

considerations may lead us to choose a hash index over a B+ tree index or to index

on a different field. (Note that this pattern of access leads to poor performance

for ISAM indexes as well, since the last leaf page becomes a hot spot.)

Again, this is not a problem for hash indexes because the hashing process ran-

domizes the bucket into which a record is inserted.

SQL features for specifying transaction properties, which we discuss in Section

19.4, can be used for improving performance. If a transaction does not modify the

database, we should specify that its access mode is READ ONLY. Sometimes it is

acceptable for a transaction (e.g., one that computes statistical summaries) to see

some anomalous data due to concurrent execution. For such transactions, more

concurrency can be achieved by controlling a parameter called the isolation level.

16.11 DBMS BENCHMARKING *

Thus far, we have considered how to improve the design of a database to obtain better

performance. As the database grows, however, the underlying DBMS may no longer be

able to provide adequate performance even with the best possible design, and we have

to consider upgrading our system, typically by buying faster hardware and additional

memory. We may also consider migrating our database to a new DBMS.

When evaluating DBMS products, performance is an important consideration. A

DBMS is a complex piece of software, and different vendors may target their sys-

tems toward different market segments by putting more effort into optimizing certain

parts of the system, or by choosing different system designs. For example, some sys-

tems are designed to run complex queries efficiently, while others are designed to run

many simple transactions per second. Within each category of systems, there are

many competing products. To assist users in choosing a DBMS that is well suited to

their needs, several performance benchmarks have been developed. These include

benchmarks for measuring the performance of a certain class of applications (e.g., the

TPC benchmarks) and benchmarks for measuring how well a DBMS performs various

operations (e.g., the Wisconsin benchmark).

Benchmarks should be portable, easy to understand, and scale naturally to larger prob-

lem instances. They should measure peak performance (e.g., transactions per second,

or tps) as well as price/performance ratios (e.g., $/tps) for typical workloads in a given

application domain. The Transaction Processing Council (TPC) was created to de-

fine benchmarks for transaction processing and database systems. Other well-known

benchmarks have been proposed by academic researchers and industry organizations.

Benchmarks that are proprietary to a given vendor are not very useful for comparing

486 Chapter 16

different systems (although they may be useful in determining how well a given system

would handle a particular workload).

16.11.1 Well-Known DBMS Benchmarks

On-line Transaction Processing Benchmarks: The TPC-A and TPC-B bench-

marks constitute the standard definitions of the tps and $/tps measures. TPC-A mea-

sures the performance and price of a computer network in addition to the DBMS,

whereas the TPC-B benchmark considers the DBMS by itself. These benchmarks

involve a simple transaction that updates three data records, from three different ta-

bles, and appends a record to a fourth table. A number of details (e.g., transaction

arrival distribution, interconnect method, system properties) are rigorously specified,

ensuring that results for different systems can be meaningfully compared. The TPC-C

benchmark is a more complex suite of transactional tasks than TPC-A and TPC-B.

It models a warehouse that tracks items supplied to customers and involves five types

of transactions. Each TPC-C transaction is much more expensive than a TPC-A or

TPC-B transaction, and TPC-C exercises a much wider range of system capabilities,

such as use of secondary indexes and transaction aborts. It has more or less completely

replaced TPC-A and TPC-B as the standard transaction processing benchmark.

Query Benchmarks: The Wisconsin benchmark is widely used for measuring the

performance of simple relational queries. The Set Query benchmark measures the

performance of a suite of more complex queries, and the AS3AP benchmark measures

the performance of a mixed workload of transactions, relational queries, and utility

functions. The TPC-D benchmark is a suite of complex SQL queries, intended to be

representative of the decision-support application domain. The OLAP Council has also

developed a benchmark for complex decision-support queries, including some queries

that cannot be expressed easily in SQL; this is intended to measure systems for on-line

analytic processing (OLAP), which we discuss in Chapter 23, rather than traditional

SQL systems. The Sequoia 2000 benchmark is designed to compare DBMS support

for geographic information systems.

Object-Database Benchmarks: The 001 and 007 benchmarks measure the per-

formance of object-oriented database systems. The Bucky benchmark measures the

performance of object-relational database systems. (We discuss object database sys-

tems in Chapter 25.)

16.11.2 Using a Benchmark

Benchmarks should be used with a good understanding of what they are designed to

measure and the application environment in which a DBMS is to be used. When you

Physical Database Design and Tuning 487

use benchmarks to guide your choice of a DBMS, keep the following guidelines in mind:

How meaningful is a given benchmark? Benchmarks that try to distill

performance into a single number can be overly simplistic. A DBMS is a complex

piece of software used in a variety of applications. A good benchmark should have

a suite of tasks that are carefully chosen to cover a particular application domain

and to test DBMS features that are important for that domain.

How well does a benchmark reflect your workload? You should consider

your expected workload and compare it with the benchmark. Give more weight

to the performance of those benchmark tasks (i.e., queries and updates) that

are similar to important tasks in your workload. Also consider how benchmark

numbers are measured. For example, elapsed times for individual queries might be

misleading if considered in a multiuser setting: A system may have higher elapsed

times because of slower I/O. On a multiuser workload, given sufficient disks for

parallel I/O, such a system might outperform a system with a lower elapsed time.

Create your own benchmark: Vendors often tweak their systems in ad hoc

ways to obtain good numbers on important benchmarks. To counter this, create

your own benchmark by modifying standard benchmarks slightly or by replacing

the tasks in a standard benchmark with similar tasks from your workload.

16.12 POINTS TO REVIEW

In physical design, we adjust the physical schema according to the typical query

and update workload. A workload description contains detailed information about

queries, updates, and their frequencies. During physical design, we might create

indexes, make changes to the conceptual schema, and/or rewrite queries. (Sec-

tion 16.1)

There are guidelines that help us to decide whether to index, what to index,

whether to use a multiple-attribute index, whether to create an unclustered or a

clustered index, and whether to use a hash or a tree index. Indexes can speed up

queries but can also slow down update operations. (Section 16.2)

When choosing indexes, we must consider complete query plans including potential

join methods that benefit from the indexes. It is not enough to just consider

the conditions in the WHERE clause as selection criteria for accessing individual

relations. (Section 16.3)

Range queries can benefit from clustered indexes. When deciding which index

to create, we have to take the selectivity of conditions in the WHERE clause into

account. Some systems allow us to store records from more than one relation in

a single file. This physical layout, called co-clustering, can speed up key–foreign

key joins, which arise frequently in practice. (Section 16.4)

488 Chapter 16

If the WHERE condition has several conjunctions involving different attributes, an

index on a search key with more than one field, called a composite index, can

improve query performance. (Section 16.5)

Query plans that do not have to retrieve records from an underlying relation are

called index-only plans. Indexes that are used for index-only access do not need

to be clustered. (Section 16.6)

After an initial physical design, continuous database tuning is important to ob-

tain best possible performance. Using the observed workload over time, we can

reconsider our choice of indexes and our relation schema. Other tasks include pe-

riodic reorganization of indexes and updating the statistics in the system catalogs.

(Section 16.7)

We can tune the conceptual schema for increased performance by settling for

a weaker normal form or denormalizing a relation to speed up some important

query. Usually, we have several decomposition choices that we need to investigate

carefully. In some cases we can increase performance through vertical or horizontal

decomposition of a relation. (Section 16.8)

When tuning queries, we first need to understand the query plan that the DBMS

generates. Sometimes, query performance can be improved by rewriting the query

in order to help the DBMS find a better query plan. (Section 16.9)

If many users access the database concurrently, lock contention can decrease per-

formance. Several possibilities exist for decreasing concurrency bottlenecks. (Sec-

tion 16.10)

A DBMS benchmark tests the performance of a class of applications or specific

aspects of a DBMS to help users evaluate system performance. Well-known bench-

marks include TPC-A, TPC-B, TPC-C, and TPC-D. (Section 16.11)

EXERCISES

Exercise 16.1 Consider the following relations:

Emp(eid: integer, ename: varchar, sal: integer, age: integer, did: integer)

Dept(did: integer, budget: integer, floor: integer, mgr eid: integer)

Salaries range from $10,000 to $100,000, ages vary from 20 to 80, each department has about

five employees on average, there are 10 floors, and budgets vary from $10,000 to $1,000,000.

You can assume uniform distributions of values.

For each of the following queries, which of the listed index choices would you choose to speed

up the query? If your database system does not consider index-only plans (i.e., data records

are always retrieved even if enough information is available in the index entry), how would

your answer change? Explain briefly.

Physical Database Design and Tuning 489

1. Query: Print ename, age, and sal for all employees.

(a) Clustered, dense hash index on 〈ename, age, sal〉 fields of Emp.

(b) Unclustered hash index on 〈ename, age, sal〉 fields of Emp.

(c) Clustered, sparse B+ tree index on 〈ename, age, sal〉 fields of Emp.

(d) Unclustered hash index on 〈eid, did〉 fields of Emp.

(e) No index.

2. Query: Find the dids of departments that are on the 10th floor and that have a budget

of less than $15,000.

(a) Clustered, dense hash index on the floor field of Dept.

(b) Unclustered hash index on the floor field of Dept.

(c) Clustered, dense B+ tree index on 〈floor, budget〉 fields of Dept.

(d) Clustered, sparse B+ tree index on the budget field of Dept.

(e) No index.

3. Query: Find the names of employees who manage some department and have a salary

greater than $12,000.

(a) Clustered, sparse B+ tree index on the sal field of Emp.

(b) Clustered hash index on the did field of Dept.

(c) Unclustered hash index on the did field of Dept.

(d) Unclustered hash index on the did field of Emp.

(e) Clustered B+ tree index on sal field of Emp and clustered hash index on the did

field of Dept.

4. Query: Print the average salary for each department.

(a) Clustered, sparse B+ tree index on the did field of Emp.

(b) Clustered, dense B+ tree index on the did field of Emp.

(c) Clustered, dense B+ tree index on 〈did, sal〉 fields of Emp.

(d) Unclustered hash index on 〈did, sal〉 fields of Emp.

(e) Clustered, dense B+ tree index on the did field of Dept.

Exercise 16.2 Consider the following relation:

Emp(eid: integer, sal: integer, age: real, did: integer)

There is a clustered index on eid and an unclustered index on age.

1. Which factors would you consider in deciding whether to make an index on a relation a

clustered index? Would you always create at least one clustered index on every relation?

2. How would you use the indexes to enforce the constraint that eid is a key?

3. Give an example of an update that is definitely speeded up because of the available

indexes. (English description is sufficient.)

490 Chapter 16

4. Give an example of an update that is definitely slowed down because of the indexes.

(English description is sufficient.)

5. Can you give an example of an update that is neither speeded up nor slowed down by

the indexes?

Exercise 16.3 Consider the following BCNF schema for a portion of a simple corporate

database (type information is not relevant to this question and is omitted):

Emp (eid, ename, addr, sal, age, yrs, deptid)

Dept (did, dname, floor, budget)

Suppose you know that the following queries are the six most common queries in the workload

for this corporation and that all six are roughly equivalent in frequency and importance:

List the id, name, and address of employees in a user-specified age range.

List the id, name, and address of employees who work in the department with a user-

specified department name.

List the id and address of employees with a user-specified employee name.

List the overall average salary for employees.

List the average salary for employees of each age; that is, for each age in the database,

list the age and the corresponding average salary.

List all the department information, ordered by department floor numbers.

1. Given this information, and assuming that these queries are more important than any

updates, design a physical schema for the corporate database that will give good perfor-

mance for the expected workload. In particular, decide which attributes will be indexed

and whether each index will be a clustered index or an unclustered index. Assume that

B+ tree indexes are the only index type supported by the DBMS and that both single-

and multiple-attribute keys are permitted. Specify your physical design by identifying

the attributes that you recommend indexing on via clustered or unclustered B+ trees.

2. Redesign the physical schema assuming that the set of important queries is changed to

be the following:

List the id and address of employees with a user-specified employee name.

List the overall maximum salary for employees.

List the average salary for employees by department; that is, for each deptid value,

list the deptid value and the average salary of employees in that department.

List the sum of the budgets of all departments by floor; that is, for each floor, list

the floor and the sum.

Exercise 16.4 Consider the following BCNF relational schema for a portion of a university

database (type information is not relevant to this question and is omitted):

Prof(ssno, pname, office, age, sex, specialty, dept did)

Dept(did, dname, budget, num majors, chair ssno)

Physical Database Design and Tuning 491

Suppose you know that the following queries are the five most common queries in the workload

for this university and that all five are roughly equivalent in frequency and importance:

List the names, ages, and offices of professors of a user-specified sex (male or female)

who have a user-specified research specialty (e.g., recursive query processing). Assume

that the university has a diverse set of faculty members, making it very uncommon for

more than a few professors to have the same research specialty.

List all the department information for departments with professors in a user-specified

age range.

List the department id, department name, and chairperson name for departments with

a user-specified number of majors.

List the lowest budget for a department in the university.

List all the information about professors who are department chairpersons.

These queries occur much more frequently than updates, so you should build whatever in-

dexes you need to speed up these queries. However, you should not build any unnecessary

indexes, as updates will occur (and would be slowed down by unnecessary indexes). Given

this information, design a physical schema for the university database that will give good per-

formance for the expected workload. In particular, decide which attributes should be indexed

and whether each index should be a clustered index or an unclustered index. Assume that

both B+ trees and hashed indexes are supported by the DBMS and that both single- and

multiple-attribute index search keys are permitted.

1. Specify your physical design by identifying the attributes that you recommend indexing

on, indicating whether each index should be clustered or unclustered and whether it

should be a B+ tree or a hashed index.

2. Redesign the physical schema assuming that the set of important queries is changed to

be the following:

List the number of different specialties covered by professors in each department,

by department.

Find the department with the fewest majors.

Find the youngest professor who is a department chairperson.

Exercise 16.5 Consider the following BCNF relational schema for a portion of a company

database (type information is not relevant to this question and is omitted):

Project(pno, proj name, proj base dept, proj mgr, topic, budget)

Manager(mid, mgr name, mgr dept, salary, age, sex)

Note that each project is based in some department, each manager is employed in some

department, and the manager of a project need not be employed in the same department (in

which the project is based). Suppose you know that the following queries are the five most

common queries in the workload for this university and that all five are roughly equivalent in

frequency and importance:

List the names, ages, and salaries of managers of a user-specified sex (male or female)

working in a given department. You can assume that while there are many departments,

each department contains very few project managers.

492 Chapter 16

List the names of all projects with managers whose ages are in a user-specified range

(e.g., younger than 30).

List the names of all departments such that a manager in this department manages a

project based in this department.

List the name of the project with the lowest budget.

List the names of all managers in the same department as a given project.

These queries occur much more frequently than updates, so you should build whatever in-

dexes you need to speed up these queries. However, you should not build any unnecessary

indexes, as updates will occur (and would be slowed down by unnecessary indexes). Given

this information, design a physical schema for the company database that will give good per-

formance for the expected workload. In particular, decide which attributes should be indexed

and whether each index should be a clustered index or an unclustered index. Assume that

both B+ trees and hashed indexes are supported by the DBMS, and that both single- and

multiple-attribute index keys are permitted.

1. Specify your physical design by identifying the attributes that you recommend indexing

on, indicating whether each index should be clustered or unclustered and whether it

should be a B+ tree or a hashed index.

2. Redesign the physical schema assuming that the set of important queries is changed to

be the following:

Find the total of the budgets for projects managed by each manager; that is, list

proj mgr and the total of the budgets of projects managed by that manager, for

all values of proj mgr.

Find the total of the budgets for projects managed by each manager but only for

managers who are in a user-specified age range.

Find the number of male managers.

Find the average age of managers.

Exercise 16.6 The Globetrotters Club is organized into chapters. The president of a chapter

can never serve as the president of any other chapter, and each chapter gives its president

some salary. Chapters keep moving to new locations, and a new president is elected when

(and only when) a chapter moves. The above data is stored in a relation G(C,S,L,P), where

the attributes are chapters (C), salaries (S), locations (L), and presidents (P). Queries of the

following form are frequently asked, and you must be able to answer them without computing

a join: “Who was the president of chapter X when it was in location Y?”

1. List the FDs that are given to hold over G.

2. What are the candidate keys for relation G?

3. What normal form is the schema G in?

4. Design a good database schema for the club. (Remember that your design must satisfy

the query requirement stated above!)

5. What normal form is your good schema in? Give an example of a query that is likely to

run slower on this schema than on the relation G.

Physical Database Design and Tuning 493

6. Is there a lossless-join, dependency-preserving decomposition of G into BCNF?

7. Is there ever a good reason to accept something less than 3NF when designing a schema

for a relational database? Use this example, if necessary adding further constraints, to

illustrate your answer.

Exercise 16.7 Consider the following BCNF relation, which lists the ids, types (e.g., nuts

or bolts), and costs of various parts, along with the number that are available or in stock:

Parts (pid, pname, cost, num avail)

You are told that the following two queries are extremely important:

Find the total number available by part type, for all types. (That is, the sum of the

num avail value of all nuts, the sum of the num avail value of all bolts, etc.)

List the pids of parts with the highest cost.

1. Describe the physical design that you would choose for this relation. That is, what kind

of a file structure would you choose for the set of Parts records, and what indexes would

you create?

2. Suppose that your customers subsequently complain that performance is still not sat-

isfactory (given the indexes and file organization that you chose for the Parts relation

in response to the previous question). Since you cannot afford to buy new hardware or

software, you have to consider a schema redesign. Explain how you would try to obtain

better performance by describing the schema for the relation(s) that you would use and

your choice of file organizations and indexes on these relations.

3. How would your answers to the above two questions change, if at all, if your system did

not support indexes with multiple-attribute search keys?

Exercise 16.8 Consider the following BCNF relations, which describe employees and de-

partments that they work in:

Emp (eid, sal, did)

Dept (did, location, budget)

You are told that the following queries are extremely important:

Find the location where a user-specified employee works.

Check whether the budget of a department is greater than the salary of each employee

in that department.

1. Describe the physical design that you would choose for this relation. That is, what kind

of a file structure would you choose for these relations, and what indexes would you

create?

2. Suppose that your customers subsequently complain that performance is still not sat-

isfactory (given the indexes and file organization that you chose for the relations in

response to the previous question). Since you cannot afford to buy new hardware or

software, you have to consider a schema redesign. Explain how you would try to obtain

better performance by describing the schema for the relation(s) that you would use and

your choice of file organizations and indexes on these relations.

494 Chapter 16

3. Suppose that your database system has very inefficient implementations of index struc-

tures. What kind of a design would you try in this case?

Exercise 16.9 Consider the following BCNF relations, which describe departments in a

company and employees:

Dept(did, dname, location, managerid)

Emp(eid, sal)

You are told that the following queries are extremely important:

List the names and ids of managers for each department in a user-specified location, in

alphabetical order by department name.

Find the average salary of employees who manage departments in a user-specified loca-

tion. You can assume that no one manages more than one department.

1. Describe the file structures and indexes that you would choose.

2. You subsequently realize that updates to these relations are frequent. Because indexes

incur a high overhead, can you think of a way to improve performance on these queries

without using indexes?

Exercise 16.10 For each of the following queries, identify one possible reason why an op-

timizer might not find a good plan. Rewrite the query so that a good plan is likely to be

found. Any available indexes or known constraints are listed before each query; assume that

the relation schemas are consistent with the attributes referred to in the query.

1. An index is available on the age attribute.

SELECT E.dno

FROM Employee E

WHERE E.age=20 OR E.age=10

2. A B+ tree index is available on the age attribute.

SELECT E.dno

FROM Employee E

WHERE E.age<20 AND E.age>10

3. An index is available on the age attribute.

SELECT E.dno

FROM Employee E

WHERE 2*E.age<20

4. No indexes are available.

SELECT DISTINCT *

FROM Employee E

5. No indexes are available.

SELECT AVG (E.sal)

FROM Employee E

GROUP BY E.dno

HAVING E.dno=22

Physical Database Design and Tuning 495

6. sid in Reserves is a foreign key that refers to Sailors.

SELECT S.sid

FROM Sailors S, Reserves R

WHERE S.sid=R.sid

Exercise 16.11 Consider the following two ways of computing the names of employees who

earn more than $100,000 and whose age is equal to their manager’s age. First, a nested query:

SELECT E1.ename

FROM Emp E1

WHERE E1.sal > 100 AND E1.age = (SELECT E2.age

FROM Emp E2, Dept D2

WHERE E1.dname = D2.dname

AND D2.mgr = E2.ename)

Second, a query that uses a view definition:

SELECT E1.ename

FROM Emp E1, MgrAge A

WHERE E1.dname = A.dname AND E1.sal > 100 AND E1.age = A.age

CREATE VIEW MgrAge (dname, age)

AS SELECT D.dname, E.age

FROM Emp E, Dept D

WHERE D.mgr = E.ename

1. Describe a situation in which the first query is likely to outperform the second query.

2. Describe a situation in which the second query is likely to outperform the first query.

3. Can you construct an equivalent query that is likely to beat both these queries when

every employee who earns more than $100,000 is either 35 or 40 years old? Explain

briefly.

PROJECT-BASED EXERCISES

Exercise 16.12 Minibase’s Designview tool does not provide any support for choosing in-

dexes or, in general, physical database design. How do you see Designview being used, if at

all, in the context of physical database design?

BIBLIOGRAPHIC NOTES

[572] is an early discussion of physical database design. [573] discusses the performance

implications of normalization and observes that denormalization may improve performance

for certain queries. The ideas underlying a physical design tool from IBM are described in

496 Chapter 16

[234]. The Microsoft AutoAdmin tool that performs automatic index selection according to

a query workload is described in [138]. Other approaches to physical database design are

described in [125, 557]. [591] considers transaction tuning, which we discussed only briefly.

The issue is how an application should be structured into a collection of transactions to

maximize performance.

The following books on database design cover physical design issues in detail; they are recom-

mended for further reading. [236] is largely independent of specific products, although many

examples are based on DB2 and Teradata systems. [684] deals primarily with DB2. [589] is

a very readable treatment of performance tuning and is not specific to any one system.

[284] contains several papers on benchmarking database systems and has accompanying soft-

ware. It includes articles on the AS3AP , Set Query, TPC-A, TPC-B, Wisconsin, and 001

benchmarks written by the original developers. The Bucky benchmark is described in [112],

the 007 benchmark is described in [111], and the TPC-D benchmark is described in [648].

The Sequoia 2000 benchmark is described in [631].

